Experimental investigation, CFD and theoretical modeling of two-phase heat transfer in a three-leg multi-channel heat pipe

نویسندگان

چکیده

Muti-channel flat heat pipe is an innovative technology recently used at the rear of photovoltaic cells to absorb and reuse wasted heat. To better understand fundamentals two-phase transfer (boiling condensation) taking place inside multi-channel pipes, a unique three-leg has been built. This one-of-a-kind was develop both computational fluid dynamic (CFD) theoretical models pipe. simulate operation with ANSYS Fluent, Volume Fluid (VOF) approach Lee model were investigated. Different types using user defined function (UDF) compared influence condenser's boundary condition, saturation temperature, mass coefficient on simulations studied. For first time, major limits for simulation pipes are identified. It concluded that available cannot predict temperature as it shows low physical meaning can easily be manipulated adjust simulation's results. Based experimental data, new developed uses thermal-electrical resistance analogy thermal resistance. By selecting optimum correlations pool boiling filmwise condensation, iterative able error 8.2%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An experimental investigation of heat transfer of Fe2O3/Water nanofluid in a double pipe heat exchanger

One way to increase the heat transfer is to use perforated twisted tapes with different hole diameters, which largely improve heat transfer with an increase in the heat transfer area at the constant volume and more mixed flow. In the previous studies, the effect of nanofluids with perforated twisted tapes is less studied. In this work, the performance of water / iron oxide nanofluid in a double...

متن کامل

An experimental investigation of heat transfer of Fe2O3/Water nanofluid in a double pipe heat exchanger

One way to increase the heat transfer is to use perforated twisted tapes with different hole diameters, which largely improve heat transfer with an increase in the heat transfer area at the constant volume and more mixed flow. In the previous studies, the effect of nanofluids with perforated twisted tapes is less studied. In this work, the performance of water / iron oxide nanofluid in a double...

متن کامل

Experimental Investigation of Boiling and Condensation Heat Transfer of a two Phase Closed Thermosyphon

In this paper the heat transfer characteristics of a two-phase closed thermosyphon over a wide range of heat transfer rates, system pressure, aspect ratios and filling ratios were studied. The experiments focused on the boiling and condensation heat transfer characteristics of the thermosyphon. The experimental boiling and condensation heat transfer coefficients inside the thermosyphon were com...

متن کامل

Experimental Investigation of Boiling and Condensation Heat Transfer of a Two Phase Closed Thermosyphon

In this paper the heat transfer characteristics of a two-phase closed thermosyphon over a wide range of heat transfer rates, system pressure, aspect ratios and filling ratios were studied. The experiments focused on the boiling and condensation heat transfer characteristics of a thermosyphon with a copper tube having 25 and 32 mm inside and outside diameters. Distilled water was used as the wor...

متن کامل

Experimental Investigation on CuO/Water Nanofluid Effect on the Heat Transfer Rate of Heat Pipe Network

In this study, a new configuration of heat pipes as Heat Pipe Network is introduced. Here, the heat pipe network is designed, constructed and then has been under the performance assessment. This heat pipe network consists of 4 vertical heat pipes connected to evaporator collector from bottom and condenser collector from top. In order to investigate the effect of nanofluids on the thermal effici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Heat and Mass Transfer

سال: 2023

ISSN: ['1879-2189', '0017-9310']

DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123813